绝密★启用前
2018年普通高等学校招生全国统一考试
理科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,则
A.B.C.D.
2.已知集合,则
A.B.
C.D.
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.记为等差数列的前项和. 若,,则
A.B.C.D.
5.设函数. 若为奇函数,则曲线在点处的切线方程为
A.B.C.D.
6.在中,AD为BC边上的中线,E为AD的中点,则
A.B.
C.D.
7.某圆柱的高为2,底面周长为16,其三视图如右图.
圆柱表面上的点M在正视图上的对应点为A,圆柱表
面上的点N在左视图上的对应点为B,则在此圆柱侧
面上,从M到N的路径中,最短路径的长度为
A.B.
C.D.
8.设抛物线的焦点为,过点且斜率为的直线与C交于M,N两点,则
A.B.C.D.
9.已知函数 . 若存在2个零点,则的取值范围是
A.B.C.D.
10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个
半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则
A.B.C.D.
11.已知双曲线,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N. 若为直角三角形,则
A.B.C.D.
12.已知正方体的棱长为,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为
A.B.C.D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若,满足约束条件 则的最大值为 .
14.记为数列的前n项和. 若,则 .
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 种.(用数字填写答案)
16.已知函数,则的最小值是 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
在平面四边形中,,,,.
(1)求;
(2)若,求.
18.(12分)
如图,四边形为正方形,,分别为,的中点,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求与平面所成角的正弦值.
19.(12分)
设椭圆的右焦点为,过的直线与交于,两点,点的坐标为.
(1)当与轴垂直时,求直线的方程;
(2)设为坐标原点,证明:.
20.(12分)
某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品. 检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验. 设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.
(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.
(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值. 已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.
(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;
(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
21.(12分)
已知函数.
(1)讨论的单调性;
(2)若存在两个极值点,,证明:.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系中,曲线的方程为. 以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)若与有且仅有三个公共点,求的方程.
23.[选修4-5:不等式选讲](10分)
已知.
(1)当时,求不等式的解集;
(2)若时不等式成立,求的取值范围.
理科数学试题 第1页(共4页)